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Insights into dynamics of the 1D Kuramoto-Sivashinsky equation are often
helpful in developing intuition about turbulence in physical, 3D Navier-Stokes
fluid flows [1]. In both settings there is by now strong evidence that the
turbulent dynamics are shaped and organized by invariant solutions (equilibria,
traveling waves, periodic orbits) and their invariant manifolds [2]. Among them,
relative periodic orbits computed on spatially periodic domains, periodic in
both in space and time, play important role in shaping structures that evolve in
time while drifting in space[3]. One can view these invariant solutions as space-
time rectangles that tile the spatiotemporal state space, infinite in both the
time and the spatial directions. To demonstrate that in turbulence the space
and time evolution can be thought of on the same footing, we evolve here in
configuration space the Kuramoto-Sivashinsky states initiated on temporally
periodic initial conditions. It turns out that such solutions are highly unstable, so
new robust variational methods [4] will need to be developed in order to
systematically locate and compute orbits (invariant 2-tori) doubly-periodic in
both space and time.

Abstract

Variational Newton descent applied to the Rössler system, 

Numerical Integration

Due to the repeller in space we employ the variational Newton descent to
locate periodic orbits. This is a variant of the damped Newton-Raphson method
with step sizes being infinitesimally small [4]. The process deforms an initial
guess loop into a periodic orbit by minimizing a cost functional which is a
function of the difference between approximate tangents and the velocities.
The corrections to the initial guess loop are found by solving the following
differential equation, which can be rewritten in matrix form.

Variational Newton Descent

Applying the variational Newton descent to locate periodic orbits of the
antisymmetric subspace of the Kuramoto-Sivashinsky equation with L = 38.5.
This can be done by taking purely imaginary Fourier and the corresponding time
evolution equation,

Antisymmetric Kuramoto-Sivashinsky

The variational Newton descent is employed to find periodic orbits of the
Rössler system as well as antisymmetric periodic orbits of the Kuramoto-
Sivashinsky system, the next step is to apply this to the full-state space of
Kuramoto-Sivashinsky to find periodic solutions with respect to the spatial
equations and then finally apply this scheme to find invariant tori.

Conclusion

We compare the numerical integration of a discretized time-periodic solution
evolved in space with a discretized spatially periodic solution evolved in time,
both taken from the shortest periodic orbit of the Kuramoto-Sivashinsky
equation with system size L = 22.

Rössler System

Figure 3. Initial condition for periodic orbit search.

Figure 5. Initial Condition (Blue) and periodic orbit (Green) 
found with variational Newton descent. Projected onto first
and second Fourier mode coordinates.  

Figure 6. Spatiotemporal plot of periodic orbit
from figure five.

Figure 4. Periodic orbit found after application of 
Newton descent. 

Figure 2. Spatial Integration of time periodic 
initial condition taken from the shortest 
periodic orbit of the Kuramoto-Sivashinsky
equation. 

Figure 1. Time Integration of shortest 
periodic orbit of the Kuramoto-Sivashinsky
equation

Spatial evolution equations

Time evolution equation

Kuramoto-Sivashinsky Equation

𝑢𝑡 = −
1

2
𝑢2 𝑥 − 𝑢𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥

𝑑

𝑑𝑡
෤𝑢𝑘 𝑡 = 𝑞𝑘

2 − 𝑞𝑘
4 ෤𝑢𝑘 𝑡 −

𝑖𝑞𝑘
2

෍

𝑘=−
𝑁
2

𝑁
2
−1

෤𝑢𝑚 𝑡 ෤𝑢𝑘−𝑚(𝑡)

𝜕

𝜕𝑥
𝑎𝑘
(0)

= 𝑎𝑘
(1)

𝜕

𝜕𝑥
𝑎𝑘
(1)

= 𝑎𝑘
(2)

𝜕

𝜕𝑥
𝑎𝑘
(2)

= 𝑎𝑘
(3)

𝜕

𝜕𝑥
𝑎𝑘
(3)

= −𝑖𝜔𝑘𝑎𝑘
1
− 𝑎𝑘

2
− ෍

𝑘=
−𝑁
2

𝑁
2
−1

𝑎𝑚
(1)
𝑎𝑘−𝑚
(0)

መ𝐴 −𝑣
ො𝑎 0

𝛿𝑥
𝛿𝜆

= 𝛿𝜏
𝜆 𝑣 − ෤𝑣

0

Superscripts indicate spatial derivatives. This 
type of redefinition is required to rewrite the 
spatial evolution equations as a system of 
equations.
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